
 18K4CSMA3 Programming with Java

 Unit I N. Baby Kala

K. N. Govt. Arts College for Women(A), Thanjavur-7

Department of Computer Science

Subject: Programming with Java

Subject Code: 18K4MACS3

Subject Incharge:

Unit I: N.Baby Kala, Guest Lecturer in Computer Science.

Unit II: K.Sharmila, Guest Lecturer in Computer Science.

Unit III: N.Anuradha, Guest Lecturer in Computer Science.

 18K4CSMA3 Programming with Java

 Unit I N. Baby Kala

Course Content

Unit I: Fundamental of OOP: Object Oriented Programming –Basic Concepts-

Benefits and Application- Java Evolution-History- Features- Overview of Java

Language: Program Structure – Tokens and Statements - Implementing Program –

Command Line Arguments.

Unit II: Constants, Variables and Data types: Constants, Variables and Data types –

Declaration and Scope of Variables – Symbolic Constant – Type Casting – Operators

and Expression: Arithmetic Expression – evaluations of Expression – Type

Conversion – Operator Precedence of Associativity.

Unit III: Decision Making and Branching: Simple if, If..Else, nesting of if..else, else

if ladder – switch – Ternary operator - Decision Making and Looping : while..do,

do..while , for , Jumps in Loops – Labeled – Sample Programs.

Text Book : “Programming with Java- A Primer”- E. Balagurusamy – Mc Graw

Hill Education (India) Pvt. Ltd., Fifth edition – Reprint 2015.

 18K4CSMA3 Programming with Java

 Unit I N. Baby Kala

FUNDAMENTALS OF OBJECT ORIENTED - PROGRAMMING

INTRODUCTION:

 Object-oriented programming is an approach to development and an organization that attempts to

eliminate some of the flaws of conventional programming.

 It involves new ways of organizing and developing programs and does not a concern using a particular

language.

 C++ is a procedural language with object oriented extension.

 Java, a pure object oriented language.

 Languages supporting OOP features include Smalltalk, Objective C, C++, Ada, Pascal, and Java.

Definition of OOPS Concepts in Java

 “Object-oriented programming is an approach that modularizes programs by creating a partitioned memory area
for both functions and data that can be used as templates for creating copies of such modules on demand.”

OOPS Paradigm

 The primary objective of the object-oriented approach is to eliminate some of the pitfalls that exist in

the procedural approach.

 OOPS allows decomposing a problem into several entities called Objects and then build data and functions
from these entities. The combination of the data makes up an object.

Object = Method + Data

 The data of an object is accessed by the methods associated with that object. However, the methods of an
object can access methods of other objects.

Features of OOPS

Java is a robust and scalable object-oriented programming language that is based on the concept of objects and

classes.

Some features of object-oriented programming in java are:

 Emphasis is on data than procedures

 Programs are divided into objects

 Data Structures are designed to characterize objects.

 Methods operating on the data of an object are tied together in the data structure.

 Data is hidden, and external functions cannot access it.

 Objects communicate with each other through methods

 New methods and data can be easily added whenever necessary

 Follows the bottom-up approach in program design

https://hackr.io/tutorials/learn-c-plus-plus?ref=blog-post
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://hackr.io/tutorials/learn-java?ref=blog-post
https://hackr.io/blog/procedural-programming

 18K4CSMA3 Programming with Java

 Unit I N. Baby Kala

General OOPS concepts in Java:

Objects and Classes

 Objects are runtime entities in an object-oriented system.

 An object can represent a person, a bank account, a place, a table of data.

 Any programming problem is analysed based on objects and how they communicate amongst themselves.

The objects interact with each other by sending messages to one another when a program is executed.

 For Example, ‘customer’ and ‘account’ are two objects that may send a message to the account object

requesting for the balance. Each object contains code and data to manipulate the data. Objects can even
interact without knowing the details of each other’s code or data.

 The entire set of code and data of an object can be made user-defined data type using the concept of the

class. A class is a ‘data-type’ and an object as a ‘variable’ of that type. Any number of objects can be
created after a class is created.

 The collection of objects of similar types is termed as a class. For Example, apple, orange, and mango are

the objects of the class Fruit. Classes behave like built-in data types of a programming language but are
user-defined data types.

Representation of an Object

Data Abstraction and Encapsulation

The wrapping up of the data and methods into the single unit is known as Encapsulation. The data is accessible
only to those methods, which are wrapped in the class, and not to the outside world.

This insulation of data from the direct access of the program is called Data hiding.

Encapsulation- Objects as “black-boxes”

https://hackr.io/blog/what-is-programming-language

 18K4CSMA3 Programming with Java

 Unit I N. Baby Kala

Abstraction is the act of reducing programming complexity by representing essential features without including

the background explanations or details. Classes wrap or encapsulate all the essential properties of the objects that
are to be created.

Inheritance

 Inheritance is the process by which objects of one class acquire some properties of objects of another

class. Inheritance supports the concept of hierarchical classification.

 In OOP, the idea of inheritance provides the concept of reusability. It means that we can add additional
features to parent class without modification; this is possible by deriving a new class from the parent class.

 The new class consists of the combined features from both the classes. In Java, the derived class is also

known as the subclass.

 For Example, a bird Robin is part of the class, not a mammal, which is again a part of the class Animal.

The principle behind this division is that each subclass shares common characteristics from the class from

its parent class.

Properties of Inheritance

 Types of Inheritance

 Single

 Multiple

 Multilevel

 Hybrid

Polymorphism

 Polymorphism means the ability to take many forms. For Example, an operation exhibits different

behavior in different situations.

 Example: A single function name can be used to handle the different numbers and different types of

arguments.

 18K4CSMA3 Programming with Java

 Unit I N. Baby Kala



 In polymorphism, objects having different internal structures can share the same external interface.

 Inheritance extensively uses the concept of polymorphism.

 Polymorphism can be achieved in two ways:

 Method Overloading

 Method Overriding

Dynamic Binding

 Binding is the process of linking a procedure call to the code to be executed in response to the call.

 It means that the code associated with the given procedure call is not known until the time of the call at

runtime.

 It is associated with inheritance and polymorphism.

Message Communication

 Objects communicate with each other in OOPs. The process of programming in case of OOP consists of

the following:

 Creating classes defining objects and their behavior.

 Creating objects

 Establishing communication between objects.

The network of Objects Communicating with Each Other

 18K4CSMA3 Programming with Java

 Unit I N. Baby Kala

 Specifying the object name, the method name, and the information to be sent is involved in message

passing.

 Objects can be created or destroyed as they have a life cycle. It allows communication between the objects

until the objects are alive.

Benefits of OOPs

 Inheritance eliminates redundant code and enables reusability.

 As Message passing allows communication with objects, this presents writing code from scratch every

time. It is thus saving development time and higher productivity.

 The principle of data hiding helps the programmer to build secure programs that cannot be invaded by a

code in other parts of the program.

 It is possible to have multiple objects to coexist without any interference.

 It is easy to Partitions work in a project based on classes and objects.

 Systems up-gradation is easy from small to larger system.

 Software complexity can be easily managed.

Applications of OOPs

 Real-time systems

 Simulation and modeling

 Object-oriented databases

 Hypertext and Hypermedia

 AI and expert systems

 Neural networks and parallel programming

 Decision support and office Automation systems

 CIM/CAD/CAD System.

 18K4CSMA3 Programming with Java

 Unit I N. Baby Kala

HISTORY

 Java is the general purpose, true object oriented programming language and is highly

suitable for modeling the real world and solving the real world problems.

 In the company Sun Microsystem, James Goslings(an employee there), started a project

named „GREEN‟.

 So James Goslings started to develop a new language known as “OAK”. In may 1995, Sun

officially announced this language at Sunworld 95.Due to some reasons, the name was

changed to “JAVA”.

 The prime motive of Java was the need for a platform independent language.

 The second motive was to design a language which is “Internet Enable”. To run the

programs on internet, Green project team come up with the idea of developing “Web

Applet”. The team developed a web browser called “Hot Java” to locate and run applet

programs on internet.

 The most striking feature of Java is “Platform neutralness”. Java is the first language that

is not tied to any particular hardware or O.S.

JAVA MILESTONES

YEAR DEVELOPMENT

1990 Sun Microsystem started to develop special software for electronic devices.

1991 James Goslings developed a new language “OAK”.

1992 New language Oak was demonstrated in hand held devices.

1993 World Wide Web(WWW)appeared on internet and transformed the text based internet

to graphical environment. Sun developed Applets.

1994 Green project team developed a web browser “Hot Java” to run applets on internet.

1995 Oak was renamed to JAVA.

1996 Java established itself as the leader of internet programming. Sun released Java

development kit 1.0.

1997 Sun released Java development kit 1.1(JDK 1.1).

1998 Sun released Java2 with version 1.2(SDK 1.2).

1999 Sun released Java2 standard edition (J2SE) and Enterprise Edition (J2EE).

2000 J2SE with SDK 1.3 was released.

2002 J2SE with SDK 1.4 was released.

2004 J2SE with JDK 5.0 was released.

 18K4CSMA3 Programming with Java

 Unit I N. Baby Kala

Features of Java

Some following Features of Java are given below:

1. Simple and Small

2. Compiled and Interpreted

3. Platform-Independent and Portable

4. Object-Oriented

5. Distributed

6. Multithreaded

7. Dynamic and Extensible

8. High performance

9. Ease of Development

10. Scalability

11. Monitoring and Manageability

12. Desktop Client

1. Simple and Small : Java is a small and simple language, Many features of C and C++ that are either redundant

or sources of unreliable code are not part of Java. Such as Java does not use pointers, preprocessor header

files, goto statement and many others. It also eliminates operator overloading and multiple inheritances.

2. Compiled and Interpreted : Generally a computer language is either compiled or interpreted. Java combines

both these approaches thus making java is a two-stage system. First, Java compiler translates source code into

bytecode instruction. Bytecode instructions are not machine instructions. In the second stage, Java interpreter

generates machine code that can be directly executed by the machine that is running the java program. So, We

can say that Java is both Compiled and Interpreted Language.

3. Platform-Independent and Portable : Java ensures portability in two ways, first, Java compiler generates

bytecode instructions that can be implemented on any machine. Second, the size of the primitive data types is

Machine-Independent. The most significant contribution of java over other languages is its portability. Java

programs can be easily moved from one computer system to another.

4. Object-Oriented : Java is a true object-oriented language. Almost everything in Java is an object. All program

code and data reside within objects and classes. Java comes with an extensive set of classes, arranged in packages.

5. Distributed : Java is designed as a distributed language for creating applications on networks. It can share

both data and programs. Java applications can open and access remote objects on the Internet as easily as they

can do in a local system. This enables multiple programs at multiple remote locations to collaborate and work

together on a single project.

6. Multithreaded : Multithreaded means that handling multiple tasks simultaneously. Java supports

multithreaded programs. This means that we need not wait for the application to finish one task before beginning

another.

 18K4CSMA3 Programming with Java

 Unit I N. Baby Kala

7. Dynamic and Extensible : Java is a dynamic language, Java is also capable of dynamically linking in new

class libraries, methods, and objects. Java can also determine the type of class through a query, making it possible

to either dynamically link or abort the program depending on the response.

8. High performance : Java performance is impressive for an interpreted language, it mainly due to the use of

intermediate bytecode. According to Sun, Java speed is comparable to the native C/C++. Java architecture is also

designed to reduce overheads during run-time.

9. Ease of Development : Java 2 Standard Edition (J2SE) 5.0 supports features – Generics, Enhanced for Loop,

Autoboxing or Unboxing, Typesafe Enums, Static import and Annotation. These features reduce the work of a

programmer by shifting the responsibility of creating the reusable code to the compiler. The resulting source code

is free from bugs because the errors made by the compiler are less when compared to those made by programmers.

10. Scalability : J2SE 5.0 assures a significant increase in scalability by improving the startup time and reducing

the amount of memory used in Java 2 runtime environment.

11. Monitoring and Manageability : Java supports several APIs, such as JVM Monitoring and Management

API, Sun Management Platform Extension, Logging, Monitoring, and Management Interface, and Java

Management Extension (JMX) to monitor and manage Java applications.

12. Desktop Client : J2SE 5.0 provides enhanced features to meet the requirements and challenges of the Java

desktop client users. It provides an improved Swing look and feels called Ocean. This feature is mainly used for

developing graphics applications that require OpenGL hardware accelera

Overview of Java Language

Java is a general purpose object oriented programming language. We can develop two types

of java programs:

 Stand – alone applications

 Web applets

https://docs.oracle.com/javase/tutorial/jmx/index.html
https://docs.oracle.com/javase/tutorial/jmx/index.html
https://1.bp.blogspot.com/-DAshGrGBpR8/V2zobbE_UpI/AAAAAAAADhM/z1h8EaRUGy0egskOcAMpTg_6hj0C-7K5gCLcB/s1600/java+types.png

 18K4CSMA3 Programming with Java

 Unit I N. Baby Kala

Stand – alone applications:-

Stand – alone application are programs written in java to carry out certain tasks on a stand –

alone local computer. Executing a stand –alone java program involves two steps:

1. Compiling source code into byte code using javac compiler.

2. Executing the byte code program using java interpreter.

class Simple

{

 public static void main(String args[]){

 System.out.println("Hello Java");

 }

}

1. class keyword is used to declare a class in java.

2. public keyword is an access modifier which represents visibility. It means it is visible to all.

3. static is a keyword. If we declare any method as static, it is known as the static method. The core

advantage of the static method is that there is no need to create an object to invoke the static method.

The main method is executed by the JVM, so it doesn't require to create an object to invoke the main

method. So it saves memory.

4. void is the return type of the method. It means it doesn't return any value.

5. main represents the starting point of the program.

6. String[] args is used for command line argument. We will learn it later.

7. System.out.println() is used to print statement. Here, System is a class, out is the object of PrintStream

class, println() is the method of PrintStream class. We will learn about the internal working of

System.out.println statement later.

//Java Program to illustrate the use of Rectangle class which

//has length and width data members

class Rectangle{

 int length;

 int width;

 void insert(int l,int w){

 length=l;

 width=w;

 18K4CSMA3 Programming with Java

 Unit I N. Baby Kala

 }

 void calculateArea(){System.out.println(length*width);}

}

class TestRectangle2{

 public static void main(String args[]){

 Rectangle r1=new Rectangle(),r2=new Rectangle();//creating two objects

 r1.insert(11,5);

 r2.insert(3,15);

 r1.calculateArea();

 r2.calculateArea();

}

}

Test it Now

Output:

55

45

Java Program Structure

A Java program may contain many classes of which only one class defines the main method. Classes

contain data members and methods that operate on the data members of the class. Methods may contain data

type declaration and executable statements. To write a java program, we first define classes and then put them

together. A Java program may contain one or more section are shown as following in Fig:

https://www.javatpoint.com/opr/test.jsp?filename=TestRectangle2

 18K4CSMA3 Programming with Java

 Unit I N. Baby Kala

Documentation Section :-

The documentation section comprises a set of comment lines giving the name of the program, the author and

other details, which the programmer would like to refer to at a later stage. Comments must explain why and

what of classes and how of algorithms. This would greatly help in maintaining the program. in addition to the

two styles of comment like “single line comment” and “double line comment”, Java also uses a third style

comment /**…..*/ known as documentation comment. This form of comment is used for generating

documentation automatically.

Package Statement :-

The first statement allowed in a Java file is a package statement. This statement declares a package name and

informs the compiler that the classes defined here belong to this package.

Example:

 package student;

The package statement is optional. That is, our classes do not have to be part of a package.

Import Statement :-

The next thing after a package statement (but before any class definition) may be a number of import

statements. This is similar to the #include statement in C. Example,

 import student.test;

This statement instructs the interpreter to load the test class contained in the package student. Using import

statement, we can have access to classes that are part of other named packages.

Interface Statement :-

An interface is like a class but includes a group of method declarations. This is also an optional section and is

used only when we wish to implement the multiple inheritance feature in the program.

Class Definitions :-

A Java program may contain multiple class definitions. Classes are the primary and essential elements of a Java

program. These classes are used to map the objects of real-world problems. The number of classes used

depends on the complexity of the problem.

Main Method Class :-

Since every Java stand-alone program requires a main method as its starting point, this class is the essential part

of Java program. A simple Java program may contain only this part. The main method creates objects of

various classes and establishes communications between them. On reaching the end of main, the program

terminates and the control passes back to the operating system.

Java Tokens

A token is the smallest element of a program that is meaningful to the compiler. Tokens can be classified as

follows:

1. Keywords

2. Identifiers

3. Constants

4. Special Symbols

5. Operators

 18K4CSMA3 Programming with Java

 Unit I N. Baby Kala

Keyword: Keywords are pre-defined or reserved words in a programming language. Each keyword is meant to

perform a specific function in a program.

abstract viod boolean

break byte case

catch char class

const continue default

do double else

enum exports extends

final finally float

for goto if

Identifiers: Identifiers are used as the general terminology for naming of variables, functions and arrays.

Examples of valid identifiers :

MyVariable

MYVARIABLE

myvariable

Constants/Literals: Constants are also like normal variables. But, the only difference is, their values can not be

modified by the program once they are defined. Constants refer to fixed values. They are also called as literals.

Special Symbols: The following special symbols are used in Java having some special meaning and thus,

cannot be used for some other purpose. The Special symbols are [] () {}, ; * =.

Operators: Java provides many types of operators which can be used according to the need. They are classified

based on the functionality they provide. Some of the types are-

Arithmetic Operators, Unary Operators, Assignment Operator, Relational Operators, Logical Operators

Ternary Operator, Bitwise Operators, Shift Operators, instance of operator, Precedence and Associativity

Period (.): It separates the package name form the sub-packages and class. It also separates a variable or

method from a reference variable.

Comments: Comments allow us to specify information about the program inside our Java code. Java compiler

recognizes these comments as tokens but excludes it form further processing. The Java compiler treats

comments as whitespaces. Java provides the following two types of comments:

o Line Oriented: It begins with a pair of forwarding slashes (//).

o Block-Oriented: It begins with /* and continues until it founds */.

https://www.geeksforgeeks.org/list-of-all-java-keywords/
https://www.geeksforgeeks.org/java-identifiers/
https://www.geeksforgeeks.org/literals-in-java/
https://www.geeksforgeeks.org/operators-in-java/
https://www.geeksforgeeks.org/java-tokens/#Arithmetic%20Operators
https://www.geeksforgeeks.org/java-tokens/#Unary%20Operators
https://www.geeksforgeeks.org/java-tokens/#Assignment%20Operator
https://www.geeksforgeeks.org/java-tokens/#Relational%20Operators
https://www.geeksforgeeks.org/java-tokens/#Logical%20Operators
https://www.geeksforgeeks.org/java-tokens/#Ternary%20Operator
https://www.geeksforgeeks.org/java-tokens/#Bitwise%20Operators
https://www.geeksforgeeks.org/java-tokens/#Shift%20Operators
https://www.geeksforgeeks.org/java-tokens/#instance%20of%20Operator
https://www.geeksforgeeks.org/java-tokens/#Precedence%20and%20Associativity
https://www.javatpoint.com/java-comments

 18K4CSMA3 Programming with Java

 Unit I N. Baby Kala

JAVA STATEMENT:

Implementing Java Program

Implementation of a Java application program involves a series of steps. They include :

 Creating the program

 Compiling the program

 Running the program

Creating the program

We can create a program using any text editor. Assume that we have entered the following program :

class Javaapp

{

 public static void main(String[] args)

{ System.out.println("Wlcome to Java"); }

}

We must save this program in a file called Javaapp.java ensuring that the file name contains the class name

properly. This file is called the source file. Note that all Java source files will have the extension java.

Compiling the program

To compile the program, we must run the Java Compiler javac, with the name of the source file on the

command line the javac compiler creates a file called Javaapp.class containing the bytecodes of the program.

Note that the compiler automatically names the bytecode file as <classname>.class. To compile the Program,

Syntax : Javac filename .java

 18K4CSMA3 Programming with Java

 Unit I N. Baby Kala

Running the program

To run the program, we must run the Java interpreter java, with the name of the class file on the command line

 Syntax: Java Filename

Java Virtual Machine:
 All language compilers translate Source code into machine code for a specific computer. The Java

compiler produce an intermediate code known as byte code as Byte code for a machine that does not exist. The

machine is called the Java Virtual Machine (JVM) and its only exist only inside the computer memory.

The JVM which in turn acts as the intermediary the Operating System and Java Object Frame Work.

 18K4CSMA3 Programming with Java

 Unit I N. Baby Kala

Command Line Arguments

Command-line arguments are parameters that are supplied to the application program at the time of invoking it

for execution. It may be recalled that the program was invoked for execution.

class Test

{

public static void main(String args[])

{

int count, i=0;

String string;

count=arg.length;

System.out.println("Number of arguments ="+count);

while(i<count)

{

 string=args[i];

i=i+1;

System.out.println(i+" : "+"Java is"+string+"!");

}

}

} // The output of the program would be :

Number of arguments=3

Output:

 Java Simple Programming Language!

 Java Object-Oriented Programming Language!

 18K4MACS3 Programming with Java

UNIT II

 K.SHARMILA

Constants, Variables, and Data types

Introduction:

 A Programming Language is designed to process certain kinds of data consisting of

numbers, characters and strings and to provide useful output known as information. The task of

processing data is accomplished by executing a sequence of instructions constituting a program. These

instructions are formed using certain symbols and words according to some rigid rules known as syntax

rules.

Constants:

 Constants in java refer to fixed values that do not change during the execution of a program.

Java supports several types of constants.

 JAVA CONSTANTS

 Numeric constants Character constants

 Integer constants Real constants Character String constants

 Constants

Integer Constants

 An Integer constant refers to a sequence of digits. There are three types of Integers , namely

decimal Integer, Octal Integer and Hexadecimal Integer.

➢ Decimal Integer consists of set of digits, 0 through 9, preceded by optional minus sign.

Valid examples of decimal Integer constants are:

123 -321 0 654321

Embedded spaces, commas, and non-digit characters are not permitted between digits.

 For example, 15 750 20.000 $1000 are illegal numbers

➢ An Octal Integer consists of any combination of digits from the set 0 through 7, with a

leading 0. Some examples of Octal integer are 037 0 0435 0551

➢ A sequence of digits preceded by 0X considered as Hexadecimal Integer. They may

also include Alphabets A through F or a through f. A letter A through F represents the

numbers 10 through 15. Following are the examples of valid hex integers.

0X2 0X9F 0Xbcd 0X We rarely use octal and hexadecimal numbers in programming.

 18K4MACS3 Programming with Java

UNIT II

 K.SHARMILA

Real Constants

Integer numbers are inadequate to represents quantities that vary continuously, such as distances,

heights, temperatures and prices and so on. These quantities are represented by numbers containing

fractional parts like 17.548. Such numbers are called real or floating point constants.

Example: 0.0083 -0.75 435.36

These numbers are shown in decimal notation, having a whole number followed by a decimal point

and the fractional part, which is an integer. It is possible that the number may not have digits before

the decimal points or digits after the decimal point. That is 215. .95 -.71 are all valid real

numbers.

A real number may also expressed in exponential(or scientific)notation. For example, the value 215.65

may be written as 2.1565e2in exponential notation. E2 means multiply by 102.

The general form is

 The mantissa is either real number expressed in decimal notation or an integer. The exponent is an

integer with an optional plus or minus sign. The letter e separating the mantissa and the exponent can

be written in either lower case or upper case. Since the exponent causes the decimal point to “float”, this

notation is said to represent a real number in floating point form.

Examples are: 0.65e4 12e-2 1.5e+5 3.18E3 -1.2E-1

Embedded white (blank) space is not allowed, in any numeric constant.

Exponential notation is useful for representing numbers that are either very large or very small in

magnitude. For example, 7500000000 may be written as 7.5E9 or 75E8.

A floating point constant may comprise four parts:

• A whole number

• A decimal number

• A fractional part

• An exponent

Single character constants

 A single character constant contains a single character enclosed within a pair of single quote

marks.

 Example: ‘5’ ‘X’ ‘;’ ‘’

Note that the character constant ‘5’ is not the same as the number 5. The last constant is a blank space.

String constants

 A string constant is a sequence of character enclosed between double quotes. The characters may

be alphabets, digits, special characters and blank spaces.

Examples are:

 “Hello Java” “2021” “WELL DONE” “?..!” “5+5” “X”

Mantissa e exponent

 18K4MACS3 Programming with Java

UNIT II

 K.SHARMILA

Backslash character constants

 Java supports some special backslash character constants that are used in output methods. For

example, the symbol `\n’ stands for newline character. Each of them represents one character, although

they consists of two characters. These characters combination is known as escape sequences.

Backslash character constants

 VARIABLES

A variable is an identifier that denotes a storage location used to store a data value. Unlike

constants that remain unchanged during the execution of a program, a variable may take different values

at different times during the execution of the program.

 Some examples of variable names are:

• Average

• Height

• Total -height

• Class Strength

Variable names may consist of alphabets, digits, the underscore(_)and dollar characters, subject to the

following conditions:

1 .They must not begin with a digit.

2. Uppercase and lowercase are distinct. This means that the variable Total is not the same as total or

TOTAL.

3. It should not be a keyword.

4. White space is not allowed.

5. Variable names can be of any length.

Constant

Meaning

‘\b’ Back space

‘\f’ Form feed

‘\n’ New line

‘\r’ Carriage return

‘\t’ Horizontal tab

‘\’’ Single quote

‘\”’ Double quote

‘\\’ backslash

 18K4MACS3 Programming with Java

UNIT II

 K.SHARMILA

DATA TYPES

 Every variable in java has a data type. Data types specify the size and type of values that can

be stored. Java language is rich in its data types.

Integer Types

Integer types can holt whole numbers such as 123, -96, 5639 . the size of the values that can be stored

depends on the integer data type. Java supports four types of integer

 Size and range of integer types

Type Size Minimum value Maximum value

byte One byte -128 127

short Two bytes -32, 768 32, 767

int Four bytes -2, 147, 483, 648 2,147, 483, 647

long Eight bytes -9, 223, 372, 036, 854, 775, 808 9, 223, 372, 036, 854, 775, 807

 Floating point types

 Floating point types contain fractional part such as 27.59, -1.375. There are two kinds of floating

point storage. The float type values are single-precision numbers while the double type represents

double-precision numbers.

 Size and range of Floating point types

Type Size Minimum value Maximum value

Float 4 bytes 3.4e-038 1.7e+0.38

double 8 bytes 3.4e-038 1.7e+308

DATA TYPES IN JAVA

Primitive data type Non-primitive data type

Numeric Non-numeric

classes Arrays

Integer Floating point Characte

rs

Boolean

Interface

 18K4MACS3 Programming with Java

UNIT II

 K.SHARMILA

Floating point data types

Character Type

 To store character constant in memory, java provides a character data type called char. The char

type assumes the size of two bytes, basically, it can hold only a single character.

Boolean Type

 We want to test a particular condition during the execution of a program. There are only two

values that a Boolean type can take: true or false . Boolean type is denoted by the keyword Boolean

and uses only one bit of storage.

Declaration of Variables

 Variables are name of the storage location variables can be used to store a value of any data

type.the general form of declaration of variable is

Variables are separated by commas. A declaration statement must end with semicolon. Some valid

declarations are:

 int count;

 float x,y;

 double pi;

byte b;

char c1,c2,c3;

Giving value to variables

A variable must be given a value after it has been declared but before it is used in an expression.

This can be achieved in two ways:

1. By using an assignment statement

2. By using a read statement.

Assignment statement

 A simple method of giving value to a variable is through the assignment statement as follows:

For example:

initialvalue = 0;

finalvalue = 100;

 Floating point types

 Float Double

type variable1, variable2 …variable N ;

 variableName = value

 18K4MACS3 Programming with Java

UNIT II

 K.SHARMILA

yes=’x’

string assignment expression is shown below:

 x=y=z=0;

it is also possible to assign a value to a variable at the time of its declaration. This takes the form:

Examples:

 int finalvalue = 100;

 char yes = `x`;

 double total = 75.36

The process of giving initial values to a variable is known as initialization.

 float x, y, z; //declares three float variables.

 int m= 5, n=10; //declares and initializes two int variables.

 int m,n=10; //declares m and n and initializes n

Read statement

We may also give values to variables interactively through the keyboard using the readLine()

method as illustrated in program.

Reading data from the keyboard

import java.io.DataInputStream;

class Reading

{

Public static void main(String args[])

{

DatInputStream in = new DataInputStream(System.in);

Int intnumber =0;

Float floatnumber= 0.0f;

try

{

System.out.println(“Enter an Integer: “);

Intnumber=Integer.parseInt(in.readLine());

System.out.println(“Enter a float number:”);

floatnumber= float.valueOf(in.readLine()).floatvalue();

}

Catch(Exception e)

{}

System.out.println(“intnumber=”+intnumber);

System.out.println(“floatnumber=”+floatnumber);

}

}

type variablename = value;

 18K4MACS3 Programming with Java

UNIT II

 K.SHARMILA

The input and output of the program

Enter an integer:

123

Enter a float number:

123.45

Intnumber=123

Floatnumber=123.45

Scope of the variable

 Java variables are actually classified into three kinds

1. Instance variables

2. Class variables

3. Local variables

Instance and class variables are declared inside the class. Instance variables are created when the objects

are instantiated and therefore they are associated with the objects. They take different values for each

object. On the other hand, class variables are global to the class and belong to the entire set of objects

that the class creates. Only one memory location is created for each class variable.

Variables declared and used inside the methods are called local variables. They are not available for use

outside the method definition. Local variables can also be declared inside the program blocks that are

defined between an opening brace{ and a closing brace }. These variables are visible to the program

only from the beginning of its program block to the end of the program block. When the program

control leaves a block, all the variables in the block will cease to exist. The area of the program where

the variable is accessible(ie Usable)is called its scope.

Nested program blocks

 Block 1

{

 int x = 0

 Block 2

 Block 3

}

{

:

:

int n =5;

:

:

}

{

:

:

int m = 0

:

:

}

 18K4MACS3 Programming with Java

UNIT II

 K.SHARMILA

We can have program blocks within other blocks (called nesting). Each block can contain its

own set of local variable declarations. We cannot however, declare a variable to have the same name as

one in an outer block. The variable declared x declared in Block1 is available in all the three blocks.

However the variable n declared in block2 is available only in block2, because it goes out of the scope

at the end of the block2. Similarly , m is accessible only in block3.

Symbolic constants

 These constants may appear repeatedly in a number of places in the program. One example of

such a constant is 3.142, representing the value of the mathematical constant “pi” . Another example is

the total number of students whose mark-sheets are analysed by the “test analysis program”The number

of students say 50, may be used for calculating the class total, class average, standard deviation etc. we

face two problems in the subsequent use of such programs. They are:

1. Problem in modification of the program

2. Problem in understanding the problem.

Modifiability

 We may like to change the value of “pi” from 3.142 to 3.14159 to improve the accuracy of

calculations or the number 50 to 100 to process the test result of another class. In both the cases, we will

have to search throughout the program and explicitly change the value of the constant wherever it has

been used. If any value is left unchanged , the program may produce disastrous outputs.

Understandability

 When a numeric values appeared in a program, its use is not always clear, especially when the

same value means different things in different places. Example, the number 50 may mean the number of

students at one place and the ‘pass marks` at another place of the same program. We may forget what a

certain number meant, when we read the program some days later.

Assignment of a symbolic name to such constants frees us from these problems. Example, we may use

the name STRENGTH to denote the number of students and PASS-MARK to denote the pass marks

required in a subject. Constant values are assigned to these names at the beginning of the program.

Subsequent use of the names STRENGTH and PASS-MARK in the program has the effect of causing

their defined values to be automatically substituted at the appropriate points. A constants is declared as

follows

Valid examples of constant declaration are:

final int STRENGTH = 100;

final int PASS-MARK = 50;

final float PI = 3.14159;

Type Casting

 There is a need to store a value of one type into a variable of another type. We must cast the

value to be stored by proceeding it with the type name in parentheses. The syntax is:

The process of converting one data type to another is called casting. Example:

int m=50;

byte n=(byte)m;

final type symbolic-name = value;

type variable1 =(type)

variable2;

 18K4MACS3 Programming with Java

UNIT II

 K.SHARMILA

long count =(long)m;

Automatic conversion

 It is possible to assign a value of one type to a variable of a different type without a cast. Java

does the conversion of the assigned value automatically . this is known as automatic type conversion.

Example: byte b= 75;

 int a= b;

Getting values of variable

 A computer program is written to manipulate a given set of data and to display or print the

results. Java supports two output methods that can be used to send the result to the screen.

• print()method //print and wait

• println() method //print a line and move to the next line.

The print() sends the information into the buffer. This buffer is not flushed until a

newline character is sent. As a result, the print() method prints output on one line until a

newline character is encountered.

Example:

System.out.print(“Hello”);

System.out.print(“Java”);

Will display the words Hello Java on one line and waits for displaying further information on the same

line. The next line by printing a newline character as shown below:

 System.out.print(“\n”);

Example: System.out.print(“Hello”);

System.out.print(“\n”);

System.out.print(“Java”);

Will display the output in two lines as follows

Hello

Java

The println() method by contrast, takes the information provided and displays it on a line followed by

a line feed.

System.out.println(“Hello”);

System.out.println(“Java”);

Will display the output in two lines as follows

Hello

Java

From To

byte short, char, int, long, float, double

short int, long, float, double

char int, long, float, double

int long, float, double

long float, double

float double

 18K4MACS3 Programming with Java

UNIT II

 K.SHARMILA

The statement System.out.println(); will print a blank line.

Getting the result to the screen

class Displaying

{

public static void main(String args[])

{

System.out.println(“Screen Display”);

for(int i=1; i<=9; i++)

{

for(int j=1; j<=n; j++)

{

System.out.println(“ ”);

System.out.println(“i”);

}

System.out.println(“\n”);

}

System.out.println(“Screen Display Done”);

}

}

The output will be

Screen Display

1

2 2

3 3 3

4 4 4 4

5 5 5 5 5

6 6 6 6 6 6

7 7 7 7 7 7 7

8 8 8 8 8 8 8 8

9 9 9 9 9 9 9 9 9

Screen Display Done

Standard Default Values

Every variable has a default value. If we don’t initialize a variable when it is first created, java provides

default value to that variable type automatically.

Default values for various types

Types of variable Default value

byte Zero: (byte) 0

short Zero: (short) 0

int Zero : 0

long Zero : 0L

float 0.0f

double 0.0d

 18K4MACS3 Programming with Java

UNIT II

 K.SHARMILA

char null character

boolean false

reference null

Operators and Expressions
 Java supports rich set of operators. we have already used several of them such as = , +, -, and * . an

operator is a symbol that tells a computer to perform certain mathematical or logical manipulations.

Operators are used in programs to manipulate data and variables. Java operators can be classified into

1. Arithmetic operators

2. Relational Operators

3. Logical Operators

4. Assignment Operators

5. Increment and Decrement operators

6. Conditional Operators

7. Bitwise operators

8. Special operators.

Arithmetic operators

Arithmetic operators are used in mathematical expressions in the same way that they
are used in algebra. Java provides all the basic arithmetic operations.The following
table lists the arithmetic operators:

Operator Result

+ Addition

– Subtraction (also unary minus)

* Multiplication

/ Division

% Modulus

++ Increment

+= Addition assignment

–= Subtraction assignment

*= Multiplication assignment

/= Division assignment

%= Modulus assignment

– – Decrement

Arithmetic operators are used as shown below

a+b a-b

a*b a/b

a%b -a*b

here a and b may be variables or constants and are known as operands

Integer Arithmetic

 When both the operands in a single arithmetic expression such as a+b are integers. The

expression is called integer expression. And the operation is called integer arithmetic. Integer arithmetic

 18K4MACS3 Programming with Java

UNIT II

 K.SHARMILA

always yields an integer value.if a=14 and b=4 we have the following results:

a-b=10

a+b=18

a*b=56

a/b=3(decimal part truncated)

a%b=2(remainder of integer division)

Real arithmetic

An arithmetic operation involving only real operands is called real arithmetic. A real operand

may assume values either in decimal or exponential notation.

Floating point arithmetic

class FloatPoint

{

public static void main(String args[])

{

float a = 20.5f, b=6.4f;

System.out.println(“a=” +a);

System.out.println(“b=” +b);

System.out.println(“a+b=” +(a+b));

System.out.println(“a-b=” + (a-b));

System.out.println(“a*b=” +(a*b));

System.out.println(“a/b=” +(a/b));

System.out.println(“a%b=” +(a%b));

}

}

The output is given below

a=20.5

b=6.4

a+b=26.9

a-b=14.1

a*b=131.2

a/b=3.20313

a%b=1.3

Mixed-mode Arithmetic

When one of the operand is real and the other is integer, the expression is called mixed-mode arithmetic

expression. If either operand is of the real type, then the other operand is converted into real and the real

arithmetic is performed. The result will be a real.

15/10.0 produces the result 1.5

15/10 produces the result 1

Relational operators

The relational operators determine the relationship that one operand has to the other.

The relational operators are shown here:

 18K4MACS3 Programming with Java

UNIT II

 K.SHARMILA

Operator Result

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

The general form is:

Implementation of relational operators

class RelationalOperators

{

public static void main(string args[])

{

float a=15.0f, b=20.75f, c=15.0f;

System.out.println(“a=” +a);

System.out.println(“b=” +b);

System.out.println(“c=” +c);

System.out.println(“a<b is ” +(a<b));

System.out.println(“a>b is” +(a>b));

System.out.println(“a==c is” +(a==c));

System.out.println(“a<=c is” + (a<=c));

System.out.println(“a>=b is” +(a>=b));

System.out.println(“b!=c” +(b!=c));

System.out.println(“b==a+c is” +(b==a+c));

The output of the program

a=15

b=20.75

c=15

a<b is true

a>b is false

a==c is true

a<=c is true

a>=b is false

a!=c is true

b==a+c is false

ae-1 relational operator ae-2

 18K4MACS3 Programming with Java

UNIT II

 K.SHARMILA

Logical Operators

Java has three logical operators. The logical operators && and || are used when we want to form

compound condition by combining two or more relations.

An example is: a>b && x==10

An expression of this kind which combines two or more relational expressions is termed as logical

expression or a compound relational expression. A logical expression also yields a value of true or false

according to the truth table.

Logical operators

Truth table

Op-1 Op-2 Op-

1&&op-2

Op-1||op-

2

True True True true

True False False true

False True False true

False False False false

The Assignment Operator

 Assignment operators are used to assign the value of an expression to a variable. we have seen

the usual assignment operator” =”. Java has a set of shorthand assignment operators which are used in

the form

Where v is a variable, exp is an expression and op is a java binary operator. The operator op=is known

as the shorthand assignment operator.

The assignment statement

v op=exp; is equivalent to v=v op (exp); with v accessed only once.

Example : x + = y+1;

This is same as the statement

x=x+ (y+1);

Increment and decrement operator

Java has two very useful operators not generally found in many other languages. These are the

increment and decrement operators:

++ and –

The operator ++ adds 1 to the operand while – subtracts 1. Both are unary operators and are used in the

following form:

++m; or m++;

--m; or m--;

Operator Meaning

&& logical AND

|| logical OR

! logical NOT

V op = exp

 18K4MACS3 Programming with Java

UNIT II

 K.SHARMILA

++m; is equivalent to m=m+1; (or m+=1)

--m; is eqiuivalent to m = m-1; (or m-=1)

We use the increment and decrement operators extensively in for and while loops.

While ++m and m++ mean the same thing when they form statement independently, they behave

differently when they are used in expressions on the right-hand side of an assignment statement.

Consider the following

m=5;

y=++m;

in this case, the value of y and m would be 6. Suppose , if we rewrite the above statement as

m=5;

y= m++;

then, the value of y would be 5 and m would be 6. A prefix operator first adds 1 to the operand and then

the result is assigned to the variable on left. On the other hand, a postfix operator first assigns the value

to the variable on left and then increment the operand.

Increment operator illustrated

class incrementoperator

{

public static void main(String args[])

{

int m=10, n=20;

System.out.println(“m=” +m);

System.out.println(“n” +n);

System.out.println(“++m=”+ +m);

System.out.println(“n++=” +n++);

System.out.println(“m=” +m);

System.out.println(“m=” +m);

}

}

Output will be

m=10

n=20

++m=11

n++=10

m=11

n=21

conditional operator

The character pair ?: is a ternary operator available in java. This operator is used to construct

conditional expression of the form

Where exp1,exp2 and exp3 are expressions.

exp1 is evaluated first. If it is nonzero(true) , then the expression exp2 is evaluated and becomes the

value of conditional expression. Note that only one of the expressions are evaluated first.

Example: a=10;

exp1 ?exp2 : exp3

 18K4MACS3 Programming with Java

UNIT II

 K.SHARMILA

 b=15;

x= (a>b) ? a : b ; in this example, x will be assigned the value of b. this can be achieved using the

if…else statement as follows:

if(a>b)

x=a;

else

x=b;

Bitwies operators

 This operators are used for testing the bits, or shifting them to the right or left. This operator

may not be applied to float or double.

Operator Result

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

>> Shift right

>>> Shift right zero fill

<< Shift left

Special Operators

Java supports some special operators of interest such as instanceof operator and member

selection operator(.)
Instanceof operator

The instanceof is an object reference and returns true if the object on the left-hand side is an instance

of the class given on the right-hand side. This operator allows us to determine whether the object

belongs to a particular class or not.
Example:

 person instanceof student

is true if the object person belongs to the class student; otherwise it is false.

Dot operator

 The dot operator(.) is used to acess the instance variable and methods of class objects.

Example:

person1.age//reference to the variable age
person1.salary()//reference to the method salary()

Arithematic expressions

 An arithematic expression is a combination of variables, constants, and operators arranged as per
the syntax of the language.

Expressions

Algebric expression java expression

ab-1 a*b-1
(m+n)(x+y) (m+n)*(x+y)
ab/c a*b/c
3x2+2x+1 3*x*x+2*x+1

 18K4MACS3 Programming with Java

UNIT II

 K.SHARMILA

Evaluation of expressions

Expressions are evaluated using an assignment statement of the form

Variable is any valid java name. when the statement is encountered, the expression is evaluated first and

the result then replaces the variable on the left-hand side. All the variable used in the expression must be

assigned values before evaluation is attempted. Examples of evaluation statements are
 x=a*b-c

y=b/c*a;

z=a-b/c+d;

Precedence and arithmetic operators

An arithmetic expression without any parenthesis will be evaluated from left to right using the rules of

precedence of operators. There are two distinct priority levels of arithmetic operators in java:

High priority * / %

Low priority + -
The basic evaluation procedure includes two left-to-right passes through the expression. During the first

pass, the high priority operators(if any) are applied as they are encountered.

During the second pass, the low priority operator(if any) are applied as they are encountered. Consider

the following evaluation statement:
x=a-b/3+c*2-1

when a=9, b=12, and c=3, the statement becomes

x=9-12/3+3*2-1 and is evaluated as follows:

second pass
step3: x= 5+6-1

step4: x=11-1

step5: x=10

the order of evaluation can be changed by introducing parenthesis into an expression
first pass:

step1: 9-12/6*(2-1)

step2: 9-12/6*1

second pass
step3: 9-2*1

step4: 9-2

third pass

step5: 7
the procedure consists of three left to right passes. However, the number of evaluation steps remain the

same as 5.

Parenthesis may be nested, and in such cases, evaluation of expression will proceed outward from the

innermost set of parenthesis. Make sure that every opening parentheses has a matching closing one. For
example

9-(12/(3+3)*2)-1=4

Whereas 9-((12/3)+3*2)-1= -2

variable=expression

 18K4MACS3 Programming with Java

UNIT II

 K.SHARMILA

Type conversion in Expressions

Automatic Type Conversion

Java permits mixing of constants and variables of different types in an expression, but during evaluation

it adheres to very strict rules of type conversion. We know that the computer, considers one operator at a

time, involving two operands are of different type, the ‘lower’ type is automatically converted to the

‘higher’ type before the operation proceeds. The results is of the higher type.

If byte short and int variables are used in an expression, the results is always promoted to int, to avoid

overflow. If a single long is used in the expression, the whole expression is promoted to long.

Remember that all integer values are considered to be int unless they have the 1 or L appended to them.

If an expression contains a float operand, the entire expression is promoted to float. If any operand is

double, result is double.

Automatic Type conversion

 char byte short int long float double

char int int int int long double double

byte int int int int long double double

short int int int int long double double

int int int Int int long double double

long long long long long long double double

float float float float float float double double

double double double double double double double double

The final result of an expression is converted to the type of the variable on the left of the assignment

sign before assigning the value to it. However , the following changes are introduced during the final

assignment.

1. Float to int causes truncation of the fractional part.

2. Double to float causes rounding of digits.

3. Long to int causes dropping of the excess higher order bits.

 Casting a value

 Java performs type conversion automatically. However, there are instances when we want to force a

type conversion in a way that is different from the automatic conversion. Consider, for example, the

calculation of ratio of female to males in a town.

ratio =female _ number / male _ number

Since female _ number and male _ number are declared as integers in the program, the decimal part of

the result of the division would be lost ratio would not represent a correct figure. This problem can be

solved by converting locally one of the variables to the floating points as shown below;

ratio=(float) female _number / male _ number

 The operator (float) converts the female _ number to floating points for the purpose of evaluation of

 18K4MACS3 Programming with Java

UNIT II

 K.SHARMILA

the expression. Then using the rule of automatic conversion, the division is performed in foalting

point mode, thus retaining the factional part of result.

Note that (float) converts the female _ number to floating point for the purpose of evaluation of the

expression. Then using the rule of automatic conversion, the division is performed in floating point

mode, thus retaining the fractional part of result.

Note that in no way dose the operator (float) affect the value of the variable female _ number. And

also, the type of female _ number remains as int in theother parts program.

The process of such a local conversion is known as casting value. The general form of a cast is;

 (Type _ number) expression

Where type- name is one of the standard data types. The expression may be a constant, variable or

an expression.

Examples:

x= (int) 7.5 7.5 is converted to integer by truncation.

y=(int) (a+b) the result of a+b is converted to integer.

z= (int) a+b a is converted to integer and then added to b.

Casting can be used to round – off a given value to an integer . consider the following statement;

x = (int) (y + 0.5) ;

 If y is 27.6, y + 0.5 is 28.1 and casting, the results becomes 28, the value that is assigned to x. Of

course, the expression being is not changed.

 When combining two different types of variables in an expression, never assume the rules of

automatic conversion. It is always a good practice to explicitly force the conversion. It is more safer.

For example, when y and p are double and m is int, the following two statements are equivalent.

Y=p + m;

Y=p+ (double) m;

Operator precedence and associativity

This precedence is used to determine hoe an expression involving more than one operator is

evaluated. There are distinct level of precedence and an operator may belong to one of the levels.the

operators at the higher level of precedence are evaluated first. The operators of the same precedence

are evaluated either from left to right or from right to left, depending on the level. This is known as the

associativity property of an operator.

Mathematical Functions

Mathematical functions such as cos, sqrt, log, etc., are frequently used in analysis of real-life problems.

Java supports these basic math functions through math class defined in the java.lang package. These

functions should be used as Math.function_name()

Example:

Double y=Math.sqrt(x);

 18K4MACS3 Programming with Java

UNIT II

 K.SHARMILA

Math functions

sin(x) Returns the sine of angle x in radians

cos(x) Returns the cosine of angle x in radians

tan(x) Returns the tangent of angle x in radians

asin(y) Returns the angle whose sine is y
acos(y) Returns the angle whose cosine is y

atan(y) Returns the angle whose tangent is y

 18K4MACS3 Programming with java

UNIT III N.ANURADHA

Decision Making and Branching:

decision making statements in Java:

Decision making structures have one or more conditions to be

evaluated or tested by the program, along with

a statement or statements that are to be executed if the condition is

determined to be true, and optionally, other statements to be executed

if the condition is determined to be false.

Branching:

 When a Program breaks the sequential flow and jumps to

another part of the code ,it is called branching.There are Two types of

Branching .

1.Conditional Branching

 When a program breaks the sequential flow and jumps to

another part of the code,it is called conditional Branching.

2.Unconditional Branching

 If Branching takes place without any decision,it is known as

unconditional Branching.

There are the 5 ways of exercising decision making in Java:

1. if

2. if-else

3. nested-if

4. else-if-Ladder

5. switch-case

1. If Statement in Java

Java if statement is the simplest decision making statement. It

encompasses a boolean condition followed by a scope of code which

is executed only when the condition evaluates to true. However if

 18K4MACS3 Programming with java

UNIT III N.ANURADHA

there are no curly braces to limit the scope of sentences to be executed

if the condition evaluates to true, then only the first line is executed.

Syntax:

if(condition)

{

//code to be executed

}

2. if else statement in Java

 18K4MACS3 Programming with java

UNIT III N.ANURADHA

This pair of keywords is used to divide a program to be executed into

two parts, one being the code to be executed if the condition evaluates

to true and the other one to be executed if the value is false.

However if no curly braces are given the first statement after the if or

else keyword is executed.

if(condition)

{

//code to be executed if the condition is true

}

else

{

//code to be executed if the condition is false

}

 18K4MACS3 Programming with java

UNIT III N.ANURADHA

3. Nested if Statements in Java

• The nested if is similar to the nested loops we learnt about in the

previous chapters. If the condition of the outer if statement

evaluates to true then the inner if statement is evaluated.

• Nested if’s are important if we have to declare extended

conditions to a previous condition

 18K4MACS3 Programming with java

UNIT III N.ANURADHA

Syntax:

if(condition)

{

//code to be executed

if(condition)

{

//code to be executed

}

}

Flow diagram of Java nested if statement:

4. else-if Ladder Statements in Java

These statements are similar to the if else statements . The only

difference lies in the fact that each of the else statements can be paired

with a different if condition statement. This renders the ladder as a

multiple choice option for the user. As soon as one of the if conditions

evaluates to true the equivalent code is executed and the rest of the

ladder is ignored.

 18K4MACS3 Programming with java

UNIT III N.ANURADHA

Syntax:

if

{

//code to be executed

}

else if(condition)

{

//code to be executed

}

else if(condition)

{

//code to be executed

}

else

{

//code to be executed

}

Flow Diagram of Java else if Ladder statements:

 18K4MACS3 Programming with java

UNIT III N.ANURADHA

5. Switch Statement in Java

Java switch statement is a different form of the if else if ladder

statements.

• It branches the flow of the program to multiple points as and when

required or specified by the conditions.

• It bases the flow of the program based on the output of the

expression.

• As soon as the expression is evaluated, the result is matched with

each and every case listed in the scope. If the output matches with

any of the cases mentioned, then the particular block is executed.

https://d2h0cx97tjks2p.cloudfront.net/blogs/wp-content/uploads/sites/2/2018/01/Flow-Diagram-of-if-else-if-statements.jpg

 18K4MACS3 Programming with java

UNIT III N.ANURADHA

• A break statement is written after every end of the case block so

that the remaining statements are not executed.

• The default case is written which is executed if none of the cases

are the result of the expression. This is generally the block where

error statements are written.

Syntax:

switch(expression)

{

case <value1>:

//code to be executed

break;

case <value2>:

//code to be executed

break;

default:

//code to be defaultly executed

}

 18K4MACS3 Programming with java

UNIT III N.ANURADHA

Flow Diagram of Java switch statement:

The Conditional Operator(?: Operator)

Java Conditional Operator or ternary operator minimizes and mimics

the if else statement. It consists of a condition followed by a question

mark(?). It contains two expressions separated by a colon(:). If the

condition evaluates to true, then the first expression is executed, else

the second expression is executed.

Syntax :

(Condition)?(expression 1):(expression 2);

For example, the segment

If(x<0)

Flag=0;

else

Flag=1;

Can be written as flag=(x<0)?0:1;

 18K4MACS3 Programming with java

UNIT III N.ANURADHA

Decision making and Looping

In computer programming, loops are used to repeat a block of code.

For example, if you want to show a message 100 times, then rather

than typing the same code 100 times, you can use a loop.

In Java, there are three types of loops.

• for loop

• while loop

• do...while loop

 for Loop

Java for loop is used to run a block of code for a certain number of

times. The syntax of for loop is:

for (initialExpression; testExpression; updateExpression)

{

 // body of the loop

}

Here,

1. The initialExpression initializes and/or declares variables and

executes only once.

2. The condition is evaluated. If the condition is true, the body of

the for loop is executed.

3. The updateExpression updates the value of initialExpression.

4. The condition is evaluated again. The process continues until

the condition is false.

https://www.programiz.com/java-programming/do-while-loop#syntax-while
https://www.programiz.com/java-programming/do-while-loop#do-while-loop

 18K4MACS3 Programming with java

UNIT III N.ANURADHA

 18K4MACS3 Programming with java

UNIT III N.ANURADHA

Example 1: Display a Text Five Times

// Program to print a text 5 times

class Main {

 public static void main(String[] args) {

 int n = 5;

 // for loop

 for (int i = 1; i <= n; ++i) {

 System.out.println("Java is fun");

 }

 }

}

Output

Java is fun

Java is fun

Java is fun

Java is fun

Java is fun

While Loop

Java while loop is used to run a specific code until a certain condition

is met. The syntax of the while loop is:

while (testExpression) {

 // body of loop

}

Here,

1. A while loop evaluates the textExpression inside the parenthesis ().

2. If the textExpression evaluates to true, the code inside the while loop

is executed.

3. The textExpression is evaluated again.

4. This process continues until the textExpression is false.

5. When the textExpression evaluates to false, the loop stops.

 18K4MACS3 Programming with java

UNIT III N.ANURADHA

Flowchart of while loop

Example 1: Display Numbers from 1 to 5

// Program to display numbers from 1 to 5

class Main {

 public static void main(String[] args) {

 // declare variables

 int i = 1, n = 5;

 // while loop from 1 to 5

 while(i <= n) {

 18K4MACS3 Programming with java

UNIT III N.ANURADHA

 System.out.println(i);

 i++;

 }

 }

}

Output

1

2

3

4

5

Java do...while loop

The do...while loop is similar to while loop. However, the body

of do...while loop is executed once before the test expression is

checked. For example,

do {

 // body of loop

} while(textExpression)

Here,

1. The body of the loop is executed at first. Then the textExpression is

evaluated.

2. If the textExpression evaluates to true, the body of the loop inside

the do statement is executed again.

3. The textExpression is evaluated once again.

4. If the textExpression evaluates to true, the body of the loop inside

the do statement is executed again.

5. This process continues until the textExpression evaluates to false.

Then the loop stops.

 18K4MACS3 Programming with java

UNIT III N.ANURADHA

Flowchart of do...while loop

Example 3: Display Numbers from 1 to 5

// Java Program to display numbers from 1 to 5

// Program to find the sum of natural numbers from 1 to 100.

class Main {

 public static void main(String[] args) {

 int i = 1, n = 5;

 // do...while loop from 1 to 5

 do {

 System.out.println(i);

 i++;

 } while(i <= n);

 }

}

 18K4MACS3 Programming with java

UNIT III N.ANURADHA

Output

1

2

3

4

5

Jumps in Loop

• The jumping statements are the control statements which transfer the program

execution control to a specific statements.
• jump: Java supports three jump statement: break, continue and return. These three

statements transfer control to other part of the program. Break: In Java, break is

majorly used for: Terminate a sequence in a switch statement.

Java Break Statement

• We can use break statement in the following cases.

• Inside the switch case to come out of the switch block.

• Within the loops to break the loop execution based on some condition.

• Inside labelled blocks to break that block execution based on some condition.

 The break cannot be used outside the loops and switch statement

Java Continue Jumping Statement

• This statement is used only within looping statements.

• When the continue statement is encountered, then it skip the current iteration
and the next iteration starts.

• The remaining statements in the loop are skipped. The execution starts from
the top of loop again.

• We can use continue statement to skip current iteration and continue the next
iteration inside loops.

Labeled Loops

We can give a label to a block of statements.A label is any valid java variable
name.To give a label to a loop,place it before the loop with a colon at the end.

 18K4MACS3 Programming with java

UNIT III N.ANURADHA

For ex.

Outer:for(int m=1;m<11;m++)

{

For(int n=1;n<11;n++)

{

System.out.print(“”+m*n);

If (n==m)

Continue outer;

}

}

